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ABSTRACT

In modern manufacturing industries, small components such as bolts and nuts of a complex

assembly are usually delivered to the plant in big loose batches. To autonomously feed those

components into ongoing assembly processes with celerity, vibratory bowl feeders (VBF)

were developed in 1950 to perform singulation, orientation, and manipulation tasks. In the

past 20 years, however, as robot assembly systems became a prominent part of the new and

more versatile manufacturing environment, VBFs appeared to be less suitable as 1) each of

them is designed for one specific part only, and 2) the cost to design and tune a new variation

is expensive.

This thesis proposes an alternative design of a nonprehensile impulse manipulator with

the corresponding control method for singulation, orientation, and manipulation by means of

seven fixed-position variable-energy solenoid impulse actuators located beneath a semi-rigid

part supporting surface. To supervise the manipulator, a 640p webcam with computer vision

tools was included to provide part pose information. To control the device, machine learning

algorithms were used to generate a part-specific control policy that bring the part to a user

specified target pose.

The device was tested by manipulating a six-faced craps-style die and an imprecise

flat square wooden nut from a child’s assembly toy. Compared with the benchmark policy,

the trained optimal policy was able to flip the die to any desired face with six times higher

probabilities and stand the flat nut up on its less stable pose with two times higher proba-

bilities. The device was then put into a collaboration task with a 6-DoF robot manipulator

to complete a manipulation task on the six-faced die. The resulted average execution time

was faster than most state-of-the-art manipulation tactics.
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1. INTRODUCTION

Automated assembly of products makes use of various factory automation devices whose

purpose is to put the component parts together in the correct order and position. When

typical first-generation industrial robots are used for the actual assembly, they execute the

exact same sequence of operations without any variation [2]. The only way this would be

successful is if the component parts are presented in the exact same position and orientation,

and it is the job of other types of factory automation equipment to make sure that this is

the case. A very common and popular such device is the vibratory bowl feeder (VBF) [3]

that uses a circular vibratory pattern and a specially designed ramp to bring parts up the

ramp in the desired orientation. VBFs are usually about a meter in diameter and half a

meter tall. During operations, loose parts are poured into the center in an constant speed.

Then, reoriented parts are received at the top of the spiral ramp. Figure 1.1 shows a VBF

designed for spool pins manufactured by Saratha Electrical Works, an indian company.

Figure 1.1: VBF orienting spool pins [1]

Such vibratory feeders can singulate and orient hundreds to thousands of parts per

minute, a rate very suitable for hard automation assembly machines performing tasks such

Portions of this chapter are to appear as: C. Kong, W. Yerazunis, and D. Nikovski, "Learning Object
Manipulation With Under-Actuated Impulse Generator Arrays," 2023 Am. Control Conf. (ACC), San
Diego, CA, USA

1
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as beverage bottling, writing instrument assembly, or other mass-production operations.

Unfortunately, there is a huge "impedance mismatch" between the vibratory bowl feeder

and robotic assembly; very few assembly robots are capable of keeping up with the vibratory

bowl’s very fast task times, on the order of a tenth of a second [4], [5]. Thus, the vibratory

bowl feeder’s speed advantage is essentially wasted. VBFs are typically noisy, expensive,

and difficult to design, due to their size and complexity. With costs reaching hundreds of

thousands of dollars and lead times of three to six months, they make economic sense only for

very large production runs, and are a poor match to the increasing trend towards high-mix,

low-volume manufacturing.

A new generation of industrial robots equipped with cameras has made it possible to

grasp parts in a range of orientations [6], as long as they are sufficiently singulated from one

another. This has led to the emergence of simplified part feeders [7] where the parts are

deposited not in a bowl, but on a flat surface which vibrates in a fixed pattern, eventually

singulating at least some of the parts so that they can be grasped by a camera-equipped

robot. This solution reduces drastically the noise, size, and cost of the feeder, as the vibration

pattern is generic and no custom design is needed for each part.

Still, this solution does not eliminate the problem of having the part often lie on the

wrong facet. The robot has some flexibility about how to grasp the part, but at best the

robot can approach it from a direction in no more than half of the unit sphere, that is, from

above. To deal with this, when the part is facing the wrong way up, the robot would have

to pick it up, place it down on a different facet, and regrasp it [8]. There is no generic robot

program to do that reliably for an arbitrary part geometry, so a customized program would

need to be developed. Moreover, even if such a program were developed, the robot would

have to spend time executing it, instead of doing actual assembly, thus increasing the takt

time of the assembly operation, which is highly undesirable.

To solve this problem, we propose a novel design for a part feeder (figure 1.2) that

uses a set of solenoids mounted under the surface to impart impulse shocks. When parts are

placed on the impact surface, impulses can create force and torque at selected locations of

the surface that flip the parts to a different facet when the current one is not suitable for

grasping. The device is equipped with a camera whose purpose is twofold: first, to recognize

which facet the part is lying on, and second, to register the part’s position and orientation in

order to decide which solenoid to fire in order to maximize the chance of success in changing
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Figure 1.2: The 7-solenoid impact manipulation surface "Thumper"

the facet. Note that this camera could be the same camera that the robot uses for grasping

decisions, so it adds no additional cost to the system, while effectively making the part feeder

adaptive.



2. DESIGN OF THE MECHANICAL SYSTEM

Impulse-based manipulation has been a rarely visited research area as of 2023. In fact most

people choose to avoid impulse as the means to deliver motion due to the complex contact

dynamics [9]. Nonlinearities in the mechanically generated impulse make its corresponding

manipulation hard to model and control. Therefore instead of using traditional control

system modeling approach, we adopted a learning-based method [10] where the probabilistic

models of manipulation outcomes were used to decide how to deliver the impulses. To ensure

a good learning database, it was important to build a mechanical system that provides

consistent impact force with enough possibilities to change the object’s facing.

Figure 2.1: Thumper Assembly
with Its Bowl

Structure Showing

Figure 2.2: Detailed View of the Solenoid
Connections

The proposed test apparatus is a seven-solenoid impulse manipulator, standing about

0.15m tall and 0.3m in diameter, as shown in Figure 2.1. The base of the manipulator is a

heavy rigid HDPE slab that stabilize the device against unwanted shifts. Six threaded steel

Portions of this chapter are to appear as: C. Kong, W. Yerazunis, and D. Nikovski, "Learning Object
Manipulation With Under-Actuated Impulse Generator Arrays," 2023 Am. Control Conf. (ACC), San
Diego, CA, USA

Portions of this chapter have been submitted to: C. Kong, W. Yerazunis, and D. Nikovski, "Stochastic
Control of Object Pose With Under-Actuated Impulse Generator Arrays," 2023 IEEE Int. Conf. Mach.
Learn. Appli. (ICMLA), Jacksonville, Florida, USA

4
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rods arranged in a hexagon with a 135 mm side length are mounted to the HDPE slab via

rubber vibration dampers. These rods support a 1/4 inch thick polycarbonate plate that in

turn support the seven upward-firing impulse solenoids1 arranged as a filled hexagon on 60

mm spacings.

Consists of a cylindrical coil of wire, a solenoid can eject the metal rod at the solenoid

core in a straight line when current passes through the wire because of the induced magnetic

force. By changing the ON time of the passing current, we were able to deliver a stronger

impulse force with longer ON time and weaker impulse force with shorter ON time. These

solenoids are rated for 12 volts continuous use, but in order to achieve sufficient kinetic action,

each solenoid was over-volted considerably — typically operating at 48 volts. Because the

duty cycle is so low (8 to 25 milliseconds of ON time per second, distributed over seven

impulse solenoids) the solenoids do not overheat.

As shown in figure 2.2, each of the solenoids carries an aluminium striking head of 25

mm diameter and 10 mm thickness. The convex impacting face of the striking head has a

large radius of 250 mm to minimize damage to the actual impact plate (bowl floor). The

impact plate is made of ∼1.6 mm thick (1/16 inch) PET2, a tough yet flexible polymer

resistant to impacts.

To assure equal energy on each of the solenoids, a gauging tool was used to adjust each

solenoid to the same height at full extension against the internal stop. When in the "rest"

(unenergised) position, there is about a 12 mm gap between the striking head and the bottom

side of the impact plate, When activated, the solenoid core accelerates upward unhindered

across the 12 mm gap and then hammers the flexible impact plate. The solenoid core can

flex the impact plate upward by about 1 mm statically, a very small distance, but because

of the high impact velocity, enough momentum transfers to the impact plate to couple an

adequate impulse to any object in the bowl while avoiding large amounts of deflection3 in

the impact plate.

To actually control the current flow to each individual solenoid, a general-purpose

Arduino Mega 2560 drives an array of PowerFET4 pulldowns. The actual circuit also provides

a freewheel diode to prevent inductive spike damage when the solenoid current is turned off.
1purchased from McMaster-Carr, p/n 69905K146
2PET is also known as polyethylene terephalate, commonly used as the clear plastic used to make soft

drink bottles.
3By staying below the elastic limit, we can obtain much longer service lifetimes for the impact plate
4IRL 1080S n-channel enhancement PowerFETs
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Figure 2.3: FEM of a single solenoid’s static effect on the support surface;
displacements accentuated 10x

Figure 2.4: FEM Z-displacement top view; blue overlay shows areas where the
support surface is moving downward.

Figure 2.3 shows an FEM analysis of the impact plate deflected by the static force

of a solenoid. Figure2.4 shows the top view on Z displacement alone. From these figures

we noticed that that the location of greatest motion (red) and the location of greatest tilt
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(right of red, before the gray) are not the same, nor are they exact inverses of each other.

Later results proved that this is actually an useful attribute: To change the pose of a test

object, the impact plate must impart both a vertical ‘kick’ sufficient to get it into the air,

and also a rotational gradient ‘kick’ sufficient to cause a < 45◦ rotation of the object before

ground contact. The region with the greatest gradient provides the best chance to re-orient

an object.

To confine the parts onto the impact plate, a white 3D-printed hexagonal "corral" is

mounted through the six threaded steel rods (Figure 2.6). The corral is 85 mm tall and

tapers from ∼250 mm diameter at the top down to a rounded hexagon ∼180 mm diameter

at the impact plate level. The corral is spaced ∼5 mm above the impact plate to allow the

impact plate to flex freely upward when an impulse is delivered. To ensure parts recognition

in the computer vision (CV) system, a piece of paper with the same color as the corral was

added to cover the PET bowl bottom.

Figure 2.5: Thumper in
calibration mod

Figure 2.6: Thumper in operation
mode with a 6-sided

die

About 300 mm above the corral, An 640p HD webcam5 is mounted on an adjustable
5Tripp-Lite AWC-002
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metal stand, staring straight down at the center of the bowl. The webcam provides ∼30

frames per second to the CV system that locates the test objects and determines the test

object pose. Just below the webcam, a ringlight is mounted on the same metal stand. In

addition to providing ample lighting intensity for CV, the ringlight also reduces the influence

of shadows from test objects. To calibrate the absolute position of the camera (and determine

the camera’s intrinsic and extrinsic parameters parameters), we used a checkerboard attached

to a 3D-printed mount that positions directly against the vertical rods in a three-point

kinematic arrangement, as shown in Fig. 2.5. Details will be discussed in the next section.

For naming convenience, in this thesis we will use the term "Thumper" to indicate

the entire apparatus including the host PC running Debian Testing, the Arduino Mega, the

PowerFET array, the 48v power supply, the seven solenoids, and the custom bowl, ringlight,

and camera assembly. We will also use the term "thumper" with a number to indicate one

of the seven sets of the PowerFET, solenoid, and striker heads. The term "solenoid" will

refer to the electromagnetic coil, magnetic core, and striker head.



3. OBJECT STATE ACQUISITION USING CV

The key to a reliable control strategy is to have fast and robust sensors. Commercial 640p

Webcams have the advantage of cheap cost and comprehensive open source support com-

paring with some of the higher end products. Instead of sending each frame of the camera

into a carefully trained convolution Neural Network to figure out the useful information, we

directly computed the state of the object using OpenCV tools. By mounting the webcam

directly above the impact plate surface with its lens facing down, It is easy to obtain states

(s, x, y, θ) of large enough items such as a die or a wooden square nut with sub-millimeter

accuracy.

3.1 Camera Calibration

The camera as the eye of thumper provides state information in the pixel frame. Be-

cause the relative position between the camera and Thumper bowl is not fixed, it is important

to perform camera calibration before each run. By obtaining the camera specific metricise

via camera calibration, One can accurately map points from the pixel frame to the object

frame in millimeters. This study employed Zhang’s method [11] in OpenCV’s Python library.

s


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



Xw

Yw

Zw

1

 (3.1)

Figure 3.1 shows the (6 × 8) calibration checkerboard with 30 mm edge checkers. By

pasting the checker sheet on top of a flat glass board, we can safely assume that all points

on the checkerboard are on the same plane. On this board, as the relative locations of

each checker vertices are known and can be found using cv.findChessboardCorners(), we

calculated the intrinsic parameters of the webcam using cv.calibrateCamera(). To ensure all

the characteristics of the webcam are captured, we took 31 pictures of the checkerboard at

different possible positions of the image with different distances and tilting angles.

Along with the 3-by-3 intrinsic parameter matrix and 5 distortion factors,

cv.calibrateCamera() also provide extrinsic parameters (Rchkr, pchkr) of each of the 31 checker-

9
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Figure 3.1: Camera intrinsic parameter calibration checkerboard

board pictures. They can be used in cv.projectPoints() to project known corner locations

from the object frame (checkerboard perspective) to camera frame (pin-hole perspective) and

to image frame (pixel locations). By calculating the 2-norm difference between the projected

pixel locations of the corners and the actual ones from the picture, we found the projection

error of the intrinsic parameter and distortion factors to be 0.0276 pixels. The calibrated

result of the intrinsic parameters can be represented in a matrix formate:

A =


fx 0 cx

0 fy cy

0 0 1

 =


678.65 0 336.67

0 677.29 273.54

0 0 1

 (3.2)

Once the nonlinear relationship between the picture frame and the camera frame is

calibrated, we want to know camera’s location in the Thumper bowl’s frame. This is where

we needed to find the extrinsic parameters or the frame transformation matrix between

Thumper’s impact plate and the camera on top. The idea is to have fixed reference points

on the Thumper impact plate to be viewed by the camera on top. Specifically, to fully recover

the transformation, 12 points are needed to solve for the homogeneous transformation matrix

as shown below:

TCO =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

 (3.3)

The solution we choose was to 3D print a special checkerboard with a mechanical

locking mechanisms added. The mechanism places the checkerboard at the exact position of



11

the thumper bowl when the thumper is in calibration mode. While there is slight bending

of the 3D printed material over time, it is later found that the featured accuracy between

the projected and the true object frame points averages from 0.12 to 0.20 millimeters, which

make this an acceptable method for extrinsic parameter calibration.

Figure 3.2: Extrinsic parameter calibration board with locking mechanisms

The extrinsic calibration process start by placing the thumper bowl under the over-

hanging camera and attaching the calibration board as in Figure 3.2. The true coordinates of

each checkerboard corner are collected in both millimeters (object frame) and pixels (image

frame). With the knowledge of the intrinsic camera parameter of fx, fy, cx, cy in Equation

3.1 and corresponding distortion factors, it is possible to solve for TCO (Equation 3.3) using

cv.solvePnP().

With the full camera parameters available, we projected the object frame axis as well

as the thumper bowl perimeter to the image frame as shown in Figure 3.3. Following the

OpenCV convention, x, y, z correspond to Blue,Green,Red. We have also set the length

of each axis arm to be 60 mm which corresponds to the length of two checker squares. By

projecting the thumper bowl perimeter, we can visualize and confirm that the checkerboard

corner points have a rich coverage within the thumper bowl’s effective region.

So far, we have enabled a one-directional frame transformation (projection) from the
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Figure 3.3: Projection of the object frame axis and thumper bowl
circumference

world frame to the image frame. The transformation in the opposite direction (3D reconstruc-

tion) is normally a harder problem as additional depth information are needed to convert 2d

image to 3d world objects; however, as the target object moves only on the thumper impact

plate, we can simplify this image frame (pixel) to object frame (millimeter) transformation

to a linear transformation by rearranging the terms in Equation 3.1:

s


u

v

1

 = ATCO


Xw

Yw

Zw

1



Xw

Yw

Zw

1

 = TOCA
−1s


u

v

1


(3.4)

Note that both the intrinsic matrix A and the extrinsic matrix TCO are invertible matrices.
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Lastly, to examine the accuracy of the above transformation, we wrote a leave-one-out

error calculation function that uses 19 checkerboard corner points to calculate the transfor-

mation and test on the left out point. The function then iterated across all 20 points on

the checkerboard so that each point has been left out once. The output of the function is

shown in Figure 3.4. The error from transformation was on average 0.146 millimeters across

the thumper bowl with diameter of 175.88 millimeters. Therefore we could safely utilize the

readings from the camera for learning and control purposes.

Figure 3.4: Leave-one-out error function output
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3.2 Image Preprocessing

Once the camera was capable of capturing accurate position information from

Thumper’s coordinate system using images, the challenges towards the object state ac-

quisition were to extract the object from the background and identify its center of mass,

perimeter, and pose. The former came from image preprocessing, and the latter involved

object specific pose identification. During this study, we chose two test objects with different

geometric characteristics: a cubic die and a wooden nut as shown in Figure 3.5. (describe

the requirment of very high robustness against unpredictability and fast calculation speed)

Figure 3.5: Test objects of a cubic die and a wooden nut

While each object had a different pose identification method, they shared the same pre-

processing pipeline using functions in OpenCV. The 640p webcam hanging on top provided a

30 fps video stream which was captured into individual frames by cv.VideoCapture()). Each

captured frame was stored as a 3-channel 640× 480 pixel array with integer values between

0 and 255. The frame was then undistorted using the intrinsic camera parameters learned in

previous section. The region of interest of the undistorted image frame was sent to an edge

extraction pipeline shown in the chart in Figure 3.6.

Bilateral filter is an edge preserved noise reduction filter, and edges provide key infor-

mation about the perimeters of the object [12]. Instead of using Gaussian blur filter that

smoothen an image regardless of neighbor color intensity, bilateral filter allow the noise to

be removed while maintaining edges that exhibits a large change in color intensity. a) and

b) in Figure 3.7 are images before and after the bilateral filter.

After removing potential noises that can cause false contour, the next step was to

simplify the filtered image into a binary image highlighting all the edges found in that

image. A naive approach would be setting a threshold where pixels were polarized to either
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Figure 3.6: Image preprocessing flow chart
*Note: contains sub-functions

0 or 255 based on their individual comparisons to the threshold. Due to the fixed threshold

value, this method can produce inaccurate results due to shadows. Canny Edge Detector is

a more adaptive alternative that uses change in color intensity between pixels call intensity

gradient [13]. Instead of the using a fixed threshold, user defines an upper and a lower

threshold of the intensity gradient of the image. While intensity gradients outside of the

upper and lower threshold are directly polarized, anything in between will be treated as an

edge (255) if it is connected to a pixel that is above the upper threshold. The effect of the

Canny Edge Detector is shown in c) of Figure 3.7.

Binary image above contains all the key pixels that marks the perimeters of the object

of interest. OpenCV contains a function called cv.findContours that connects these loose

points in clockwise and form a contour object. Such an object is supported by powerful tools

such as shape matching and shape fitting. In this study, we used cv.minAreaRect to find the

best fitting rectangle to inscribe the test objects who effect is shown in Figure 3.8.

Under ideal circumstances, the job of image preprocessing would conclude at this point,

and the fitted rectangle would be sent to object specific pose identification module. In reality,
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Figure 3.7: a) Undistorted image, b) bilateral filtered image, c) Canny
threshold result

Figure 3.8: Fitting rectangle around the die

after thousands of times moving the test object inside the Thumper bowl, we found almost

20% of all rectangles to be falsely fitted like Figure 3.9. Further debugging revealed that

most of the false case were due to the object touching the wall of the bowl, resulting in dark

shadows being included as part of the edge. However, as contours created by the shadow are

usually not enclosed, we created an additional function that removes unenclosed contours

and other invalid contour using the internal hierarchy structure of the contour object. At

the same time, we also conditioned the remaining contours using factors such as rectangle

area and edge length to determine the validity of the contour. During the most recent run

of 65,000 samples, only 50 was misfitted, rendering the fitting accuracy at 99.92%.
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Figure 3.9: Falsely fitted rectangle

3.3 Object Specific Pose Identification

The preprocessing pipeline served as a cropping tool that output a sub-image of the

object of interest. In addition, the x, y coordinates (pixels) and the rotation θ (degrees) of

the fitted rectangle were provided by cv.minAreaRect function in the image frame. Using the

image frame to object frame transformation described in Equation 3.4, the above mentioned

states could all be represented in millimeters in the object frame where the center of the

Thumper bowl was the origin. To determine the 3D orientation of the die and the nut, we

developed a separate function for each of the test object.

Figure 3.10: Die sub-image (right) with identification results prompt (left) in
[face, oridentation, template_matching_score]

For the 6-faced die, the most computation efficient way of determining which number

faces up was to apply template matching on the cropped sub-image. As shown in Figure

3.10, the location of the number on the die is not perfectly centered in the sub-image.

What’s more, the perimeter of the die in some of the sub-images are incomplete, which
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creates great inconsistencies for template matching. To ensure a high robustness of the die

face recognition function, we wrote a cropping function that "eats" away the perimeter of

the sub-image. When there’s only padding left surrounding the face number, the largest

rectangle that inscribes all the pixels of that face number was extracted .

With the cropping tool ready, we created a template library by taking six pictures of the

die, one for each face, and the die was placed arbitrarily but close to the center of the thumper

bowl. Under each picture, we manually labeled the corresponding number of the face as

the file name. During the face recognition process, the sub-image of a die with unknown

face would be compared with all templates in the library using cv.matchTemplate() with

cv.TM_CCORR_NORMED, the normalized cross-correlation algorithm [14]. The value

of the largest correlation was used as the matching score between the unknown face and

templates. The third column in the result prompt of Figure 3.10 shows matching scores of

the last 8 frames of the die placed as in Figure 3.7. After testing out with several experiments,

we found a threshold of 0.65 that produced the lowest false negative rate of less than 1 in

1000 and nearly zero false positive rate.

The pose identification of the wooden nut was much simpler. There were only two

visually identifiable 3D pose for the nut: standing and laying. When the nut was standing,

the top view appears as a thin rectangle; when the nut was laying down, the camera saw

a square with a small circle inside. A naive approach to distinguish between this two pose

was just to compare the ratio between the width and the height of the perimeter. With a

threshold of 1.5, the function worked fairly well when the nut was within 60 millimeter radius

of the camera optical axis which was near the center of the Thumper bowl. In reality, the

object doesn’t always stay close to the center. When the nut was standing near the wall, the

deviation from the center made the top view from the camera looking like parallelograms of

various size. Such an inconsistency was compounded with the shadow the nut casted to the

wall, making it hard to determine whether the nut was still standing or undesirably leaning

against the wall like in Figure 3.11.

To improve the identification function, we added an additional criteria that used the

fitting rectangle area. With the dimensions of the object and the transformation from object

frame to image frame in Equation 3.1 both available, we calculated the expected top view

areas of the nut in standing pose and in laying pose as number of pixels. Using these values as

centers, we set a lower and an upper bound for either pose of the nut. During the experiment,
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Figure 3.11: Nut leaning against the wall

if an unknown pose satisfied one of the area bound and the edge ratio threshold, it would be

identified as either standing or laying. If it failed either of the criteria, it would be categorize

as an unknown pose and await later manual identification. Although such classification

achieved a very low false positive rate with the trade off of more human intervention, it was

proven to be beneficial when we discovered some unexpected pose of the nut which led to

further improvement of the identification function. In a recent experiment using the wooden

nut, only about 125 out of 60,000 (0.21%) samples were identified as unknown poses, and in

most of those poses, the nut was leaning against the wall. Figure 3.12 shows the result of

the identification function.

Figure 3.12: Nut pose identification result
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3.4 State Acquisition under Motion

The computer vision tools discussed in previous sections embodied a robust pipeline

for single frame object pose identification. During real time experiments, the 640p webcam

could collect on average 30 frames per seconds. When analyzing the object pose from a video

stream, unfinished movements of the object could create temporal uncertainties towards its

state identification. An open-loop approach to the state extraction problem would be to wait

for a fix amount of time (i.e. 2 seconds) after each impulse manipulation for the object to

land and enter a motionless state before recording. This approach was guaranteed to work,

but it was also too slow (3600 sec
hr

× 1/2 sample
sec

= 1800 sample
hr

) in terms of data acquisition.

An alternative approach would be adding a motion detection feature using frames from the

webcam.

The initial motion detection function compared the difference in individual pixels be-

tween the newly collected frame to its previous frame, and if the sum of difference was lower

than a certain threshold, the state would be recorded and the next manipulation signal would

follow. During real time implementation, we realized that the webcam has an auto exposure

system that could not be turned off. This resulted in overall brightness of the frame to

change from time to time which made this pixel intensity based method less reliable. Later,

we made another attempt by using the canny threshold result (Figure 3.7 c) instead of the

original frame image (Figure 3.7 a). The corresponding motion detection function was much

more robust since the difference between the new and old binary images were localized to

object edges. Equipped with the motion detection function, the data acquisition rate of

the CV system reached 3000 sample
hr

. During the random manipulation experiment, impulses

that created very little motion of the object would be followed by the next impulse immedi-

ately, but when the nut was wavering to stand up, the system would wait for the motion to

complete.



4. LEARNING TO CONTROL A SIX-FACED DIE

In the past two chapter, we described an Arduino controlled Thumper bowl with seven

independent firing solenoids and an OpenCV backed vision system that is capable of identify

the state of the objects in the bowl at a frame rate of 30 fps. The former provides under-

actuated controls of the object state whereas the latter ensures robust observations of the

object state. In this chapter, we will introduce the mind that can utilize the hand and the

eye—a learning-based object-specific control policy.

The idea of using a six-face die as the first test object wasn’t immediately apparent.

Since the purpose of this device lies in industrial assembly tasks, we thought of using nuts

and bolts as manipulation targets. There were, however, great difficulties to even get started

with the training due to the lack of knowledge in the manipulator’s capability and its vast

control space. As a result, we decided to start with manipulating a canonical 3D object —

a cube, to explore the controllability of the manipulator. Inspired by a casino game called

Craps, we added numbers from 1 to 6 onto the cube design to form a die. The die has edge

length of 25 mm and weights about 20 gram. To ensure an uniform weight distribution,

the part was printed using a Formlabs resin printer with the Grey Resin 6. Lastly, we used

white nail polisher to highlight the shape of the numbers. To use this die as a medium to

understand the capability of the Thumper bowl, we designed the following task:

Die Task: Given any starting state of the die (xini, yini, θini, sini) and a desired

face number sd ̸= sini, create a policy that flips the die to the desired face number

with the least amount of firings.

As mentioned in the beginning of Chapter 2, the optimal control policy for the die

will be learned from experiment data. Given any state of an object to be manipulated, the

corresponding control policy should provide the optimal command tuple (Thumper#7, firing

duration8), or, a list of command tuples that will lead to the desired facet. To evaluate the

Portions of this chapter are to appear as: C. Kong, W. Yerazunis, and D. Nikovski, "Learning Object
Manipulation With Under-Actuated Impulse Generator Arrays," 2023 Am. Control Conf. (ACC), San
Diego, CA, USA

6purchased from Formlabs, RS-F2-GPGR-04
7Thumper#∈ {0, 1, 2, 3, 4, 5, 6} as shown in Figure 4.1
8firing duration = [9ms, 20ms] ∈ Z is the ON time of the current in a solenoid. It is a way to quantify

the impact of the kick.

21



22

Figure 4.1: Thumper# Layout Figure 4.2: Nut pose identification
result

performance of the learned policy, a benchmark random firing policy is used. Such random

policy will randomly select a solenoid with a random firing duration regardless of the state

of the object; the vision system then log the object state after the firing. This policy is also

used to create training data for the candidate ML algorithms.

4.1 Training Data Collection and Overall Thumper Data Analysis

The first and most important step of applying machine learning on this unknown device

was to determine the format of features and labels. While the choice of ML algorithm was

still unknown, it was crucial to ensure that the recorded data can be generalized to any

possible learning algorithms — k-nearest neighbors, support vector machines, deep neuron

networks, or even reinforcement learning. As a result, the data are collected in the following

format:

Table 4.1: Die Experiment Sample Data Storage Structure

exp
id

x_ini y_ini θ_ini status
ini

Thumper# firing du-
ration

x_f y_f θ_f status_f

...
...

...
...

...
...

...
...

...
...

...
n xn yn θn sn utn udn xn+1 yn+1 θn+1 sn+1

n+1 xn+1 yn+1 θn+1 sn+1 utn+1 udn+1 xn+2 yn+2 θn+2 sn+2
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(a) (b)

Figure 4.3: Die Random Policy Full Data (a) vs. Only Succeeded Data (b)

Using this data format, with the above mentioned random policy experiment setup, we

ran a 65,000 sample experiment that lasted almost 20 hours. Taking the raw experiment data,

two filtering criteria was applied: 1) sample with unrecognizable state (sn = −1||sn+1 = −1),

and 2) sample whose coordinate is outside the maximum radius of the bowl (175.88 mm).

After the filtering, about 62,500 samples remained. Figure 4.3 (a) shows a scatter plot of all

the initial locations of each sample. The data distribution across the impact plate top was not

even: the die appeared near the six peripheral solenoid much more frequently than the center

solenoid. We tested the center solenoid’s impulse by swapping it with one of the peripheral

one. It showed no difference, and we had also later observed a tendency for the die to travel

toward the side wall of the thumper bowl. This was the same case for flipped or facet rotated

samples in Figure 4.3 (b). These samples were a subset of samples in Figure 4.3 (a) that

ended on a difference facet comparing with their initial facet (sn+1 ̸= sn). These samples are

considered "successful" because they represented the result from thumper’s manipulation to

the die. On the other hand, the subset (sn+1 = sn) was considered to be "failed".

With the idea of successful samples and failed samples, we decided to inspect how the

success rate was influenced by the two controlling factors in the command tuple: thumper#

and impulse duration. From Figure 4.4, we see that 1) with the random firing policy, most
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Figure 4.4: Die Random Policy Flip Counts/Rates vs. Thumper#

Figure 4.5: Die Random Policy Flip Counts/Rates vs. Firing Durations

solenoids have about 30% chance to change the facet of the die except the center solenoid

— Thumper2, and 2) all solenoids had similar total firing numbers at around 9000 samples.

The significantly lower successful chance of Thumper2 can only be explained by its location

and the complex contact dynamics of the impact surface.

By looking at the number of successful flips in the firing duration’s perspective (Fig-

ure 4.5), we see a gradually rising chance from 3% to about 43%. The growth seems to

plateau after > 18 ms firing duration of the electric current through solenoids. This means

that higher firing duration does not further improve the ability to manipulate die’s facet.

Based on the statistic that describs the overall performance, One might argue that lower
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impulses are not necessarily effective in terms of successful manipulation of facet. In the

next section, evidence from individual solenoids will show that lower impulse manipulations

are indispensable actions for locations closer to the source of impulse.

(a) (b)

Figure 4.6: Die Random Policy Thumper0 Data (a) vs. Thumper0 Succeeded
Data (b)

4.2 Individual Solenoid Data Analysis

By looking at the result from just one solenoid — Thumper0, something more interest-

ing about thumper’s mechanism emerges. First of all, by comparing the data between Figure

4.6 (a) and Figure 4.3 (a), we were ascertain that samples drawn for Thumper0 was quite

representative of the true distribution since the smaller distribution from just one solenoid

resembles the shape of the overall data. Figure 4.6 (b) shows locations of the die that had

successful flip due to Thumper0. The scatter plot provides the following observations:

1. a tight cluster at around (−60, 0)
2. two group of loose cluster gathering at the top and bottom right, almost symmetrical

to the x-axis
3. a clearance area to the right of the tight cluster and another one between the two loose

cluster
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Observation 1) isn’t so surprising since Thumper0 is located right below the coordinate

(−60, 0) according to the schematics in Figure 4.1. The following two observations, however,

convey important messages about the controllability of each solenoid. The successful flip plot

of all other solenoids can be found in the appendix Figure A.1. Except the center solenoid,

all six peripheral solenoids share almost identical distributions following the observations

above but rotated following their positions with respect to the center of the thumper bowl.

We drew a hypothesis based on the FEM analysis plot in Figure 2.3: Locations of successful

flip should match the corresponding region of the steepest slope in the FEM analysis. Based

on this hypothesis, we further surmised that the direction of the flip should point towards

the normal vector of slope surface.

(a) * (b)

Figure 4.7: Die Facet Rotation Table (a) and Schematic (b)

*Note that "+" means the bottom face, and "×" means no change in facet.

To examine the hypothesis, we put together a technique to represent the flip direction

of the die at each location of Figure 4.6. This technique uses three features as described in

Table 4.1: the initial facet sn, orientation θn, and the final facet sn+1. The idea is that the

facet rotation of the die is interchangeable. We summarized a facet rotation table based on

the number configuration of the die in Figure 4.7 (a). Suppose the die has a starting face#

1 as shown in Figure 4.7 (b), by flipping north "N" (body frame), the die rotates around a
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vector that is collinear with "W" for 90 degrees, following the right hand rule. According to

the rotation table, it will land on face# 3. Therefore, this flip direction will be represented

as an arrow rooted at the center of the initial location of the die, and points towards the

direction of "N." The length of this arrow will just be an unit length.

Figure 4.8: Thumper0 Die Flipping Direction Map

Using this technique, we plotted the flip direction of the die from firing Thumper0

in Figure 4.8. This quiver plot conveys a great amount of information regarding the con-
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Figure 4.9: Thumper0 Die 2D Translation Map

trollability of Thumper0. The dense cluster or "island" described in observation 1) indeed

produces outward pointing flips; however, the flipping directions of the two looser cluster

have majority of their arrows pointing towards the +y/ − y direction. As the location gets

closer to the island, the direction of arrows turn more and more towards the island. The

two clearance areas as mentioned in observation 2) serve as separation lines where the die

flips on opposite directions on each side. On top of this, the impact of each firing has also
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been color coded based on the "Impulse Duration" bar. When the die is close to the impact

source (i.e. (−60, 0)), lighter impact have higher success rate to flip the die. The two further

cluster regions are dominated with stronger impulses where arrows’ color get darker. As a

result, this flip direction plot visualized a ballpark control space (the island, two clusters)

and the uncontrollable region (two clearances) of Thumper0. With all seven solenoids work-

ing together, the uncontrollable region of a single solenoids might be in the control space of

other solenoids.

In addition to the flip direction plot, we extended the idea of quiver arrows and created

a 2D Transition map that shows the initial (xn, yn) and final location (xn+1, yn+1) of each

successfully flipped die using Thumper0. As shown in Figure 4.9, distance and direction of

the translation are represented in terms of the length and direction of the quiver arrows.

Colors of the arrow inherent the same meaning as in Figure 4.8 — firing duration which

correspond to the intensity of the firing solenoid. The "island" on the left side project the

die away to the right half of the thumper bowl. Meanwhile, the +y/ − y clusters result in

shorter trajectories. Lots of the arrows end at around the boundary of the bowl. It is still

unclear if the thumper wall also plays a role in manipulating the die. In addition to the

translation patterns, this plot also provides an insight into chained control policies where

trajectories of the die can be predicted and used to make n-horizon policies. This topic will

be discussed with details in the future work section.

Back to the hypothesis mentioned earlier, these two plots (Figure 4.8 and 4.9 have

shown enough evidence to reject the first postulation drawn from the FEM figure. It seems

that explanations behind the distribution of successful flips rely on more than just static

FEM analysis. Inspired by the flip direction plots of the center solenoid (Thumper2) in

Appendix A.2 (c) and A.3, a possible future direction could be using a dynamic FEM that

shows the shock wave propagation, and exploring how the wave interact with the six fixed

constraints imposed by the clamping nuts on the edge of the thumper bowl.

4.3 Manipulation Repeatability Analysis

When discussing the hardware design requirements in the beginning of Chapter 2, we

mentioned that the Thumper Bowl was designed to meet two criterion: 1) possibility to

manipulate the facet of parts, and 2) consistency in performing such manipulation. Section

4.2 has shown the possibilities and different ways for Thumper to flip the die using one of
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the solenoids in various firing durations. Before deciding which machine learning algorithm

to use, it is important to confirm that the successful manipulations recorded in the 62,500-

sample database can be reproduced.

Figure 4.10: Repeatability Testing Jig and a Die in the Thumper Bowl

To assess the manipulation repeatability, we made a kinematic jig to reproducibly place

the die at several "Successful" locations in the bowl with number ‘3’ facing up and oriented

at zero degrees as shown in Figure 4.10. We then positioned the die to each location 10

times with sub-millimeter precision (as verified by the CV system).

The result is shown in Figure 4.11. Figure 4.11 (a) shows the xy location of the die

during four experiments with varying jig-set starting positions and fixed impulse location

and duration. The starting locations of the four experiment groups are marked with black

"+" signs as G1, G2, G3, and G4. Figure 4.11 (b) shows the detailed firing input and the

resulting facets. Four observations are made from this Figure:

1. Location G1 (shown in blue) showed that the system was highly reproducible, with

little variance (less than 10 mm) in xy location and 100% transitioning from face "3"

to face "6".

2. Location G2 (in green) was also highly reproducible (about 15 mm), and a 100% chance

of transitioning from face "3" to face "5".

3. Location G4 (in orange) showed a mild spread (about 20 mm) but a bifurcating face

transition (seven to face "1", three to face "5").

4. Location G3 had the highest spread (about 70 mm) and a chaotic result in face tran-

sition (six samples rotated to face "1", two to face "2", and one sample each to face
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(a)

(b)

Figure 4.11: Thumper Manipulation Repeatability Experiment Results

"3" and "5")

The result from Figure 4.11 shows that it is possible to reliably control the landing face

of the die with the correct control input, at least from some regions of the bowl. For some

positions the transition is well defined and the final location after an impulse is contained to

a small area (such as G1, G2 and hence highly predictable), and for other positions (G3, G4)
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the final location after impulse is essentially chaotic. All of the samples in these figures used

the same impulse solenoid 0, and always fired for 20 milliseconds. The observations from

Figure 4.11 (a) and (b) pointed out a possible relationship between the spread of landing

positions and the uncertainties in landing faces.

On top of what we directly learned from those observations, this experiment has also

hinted that with any pair of the command tuple (Thumper#, firing duration), there is an

inherent probability map of the flipping manipulation that can be called a "reliability map".

This map can tell me, for example, that with (Thumper0, 20ms), the probability of getting

repeated manipulation result at G1, G2 is nearly 100%. While it almost seemed like we have

found a new quantity to be learned to enhance the performance of Thumper, the amount

of sample needed to achieve such a data density—10 samples at the same exact state—is

unimaginable.

Assume that we can accept a tolerance of a 5 × 5 = 25 mm2 square in the xy feature

space, 10 degrees in the θ feature space. With the bowl’s impact surface area estimated

to be A = 1
4
1752π ≈ 24052 mm2, about A/25 ≈ 962 distinct states of die’s location can

be represented on the surface. Since the die has 90 degrees rotational symmetry, a total

of 90/10 = 9 states are needed for the angle. Since the transition of numbers on the die is

interchangeable based on the facet rotation table in Figure 4.7, only one state is needed. The

total amount of states of the die observed on the impact plate would be nstate = 962× 9 =

8658. This is the number of states for each command tuple pair. The total amount of states

across all command tuple (Thumper#, firing duration) is Nstate = 8658× 7× 11 = 666666.

Now if we want to have 10 samples in each states, we would need 6666660 samples. As

mentioned in Section 3.4, the average running speed of Thumper is 3000 samples / hr. This

means that 2222 hr or 92 days are needed to develop such sample size.

The hint from the observations and the calculation above showed that "reliability" as a

desirable quantity is hard to fully realize, and the performance of the about-to-be-discussed

machine learning algorithms can be compromised as the size of the current training data is

only 1/100 of the desired sample size.

4.4 Algorithm Selections and Control Results

Up to this point of the chapter, we have proposed a control task for Thumper, set

up an experiment to collect training data, and provided some insights about the capability
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of Thumper for manipulating the die. All these information will now congregate and aid

the process of finding a suitable learning control method for this problem setting. The

learning object involves deriving a control policy u = [ut, ud]
⊺ = π(s, x, y, θ) that selects

which solenoid ut to fire with duration ud so as to maximize the probability of moving the

object into a desired state. This desired state can be described in terms of one or more of

the state components, for example changing the face the part is lying on, or also possibly

bringing it to a desired position and orientation.

Let the Boolean function g(s, x, y, θ), provided by the user, indicate whether state

(s, x, y, θ) is a desired goal state or not. A desired ML algorithm should learn probabilistic

models p = h(s, x, y, θ,u) = Pr[g(s′, x′, y′, θ′) = True|s, x, y, θ;u] that predict the probabil-

ity p of bringing the part into a desired configuration by firing the command tuple u when

the part is in configuration (s, x, y, θ). Here, (s′, x′, y′, θ′) is the successor state after firing

a solenoid according to u. With a sufficiently accurate predictive model, It is possible to

develop a greedy control policy by choosing the solenoid (and maybe duration) u∗ that max-

imizes the probability of success: u∗ = argmaxu h(s, x, y, θ,u). For a multi-step decision

policy, it might also be advantageous to explicitly learn a model to predict this state, of the

form (s′, x′, y′, θ′) = f(s, x, y, θ,u) [10], [15].

This impulse-based manipulation of the die was first explored as a command domain

question — what set of solenoid / impulse pair were actually useful in rolling the die. As

discussed in Section 4.2, there are controllable and uncontrollable states for each sets of

command tuple u = [ut, ud]. Experiment in Section 4.3 has shown that the repeatability of

the outcome changes drastically with the location of the die. While it is hard to make use

of the knowledge in repeatability with the training data size, we designed a sub-task to first

testify if we can improve the chance of effectively flipping the die with the already collected

data.

4.4.1 Sub Task: Flipping the Die to any Other Face

In this sub-task, the goal was to roll the die to any face other than the one it was

currently on, easily recognizable by the vision system as a change of the number on the

topmost face. Accomplishing this task in a minimal number of attempts is equivalent to

maximizing the probability of success in one attempt. When starting in state (s, x, y, θ) and

ending up in state (s′, x′, y′, θ′), the success criterion is g(s′, x′, y′, θ′) = True iff s′ ̸= s.
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Given the face transition results as seen in Figure 4.8, it is clear that the system

response is not linearly separable, with chaotic areas and significant dead zones. In addition,

the choice of which solenoid to fire is clearly a categorical choice, the duration of impulse on

each solenoid is continuous (at least as viewed on a millisecond scale). This requires a control

policy that can yield simultaneously a multi-class classification (Thumper#) and a regression-

style continuous-valued result (firing duration). Instead of attempting nonlinear model-based

learning algorithms involving optimizing multiple hyper-parameters simultaneously, we chose

to consider memory-based approaches.

Several informal tests were done with a k-nearest neighbors (kNN) classifier [16] with

k varying from 1 to 24, but the results were not encouraging —the associated areas under

the receiver-operator characteristic (AUROC) curves9 were on the order of 0.7 at best [17].

Figure 4.3 and 4.6 both showed that the sample data set was strongly biased toward having

the die near the edge of the corral, probably due to the die hitting the corral wall and losing

energy in the partially inelastic collision. This effect (akin to thermally induced density

gradients in a gas) caused significant depletion of the sample population in the bowl center.

In these low density regions, the kNN diameter was expanding to 10-20 mm. As we found in

further testing using a kinematic jig to reproducibly place the die in a controlled location,

the regions of the bowl where movements were correlated and consistent are often smaller

than 10mm (Section 4.3). If those regions happened to be low density as well, then the

effective area of the kNN would become much larger than the correlation area and the kNN

policy could behave no better than random chance.

We found significantly better results with a radius neighborhood (rN) classifier [18].

The rN classifier included all points within a given radius r in the voting set rather than

just the k nearest points as in a kNN; voting and final selection of which solenoid to fire

proceeded similarly to the kNN and yielded the categorical output choosing which solenoid

to fire. The firing duration was then chosen to be the mean of the set of successful activation

impulses on that solenoid. Since we had access to the number of neighbours of each sample,

we could keep track of when a sample was having too few neighbors or no neighbors at all

and took action towards it.

Like kNN, rN relies on some distance metric to determine whether a sample (x, y, θ)
9The ROC curve describes the performance of a binary classification model for multiple thresholds at the

same time. The AUROC curve ranges from 0.5 (random guessing) to 1 (correct on all test set).
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Figure 4.12: ROC curves for determining r (radius of neighborhood) of the rN
classifier

is close enough to a prior observation (x0, y0, θ0). As θ inherited a different unit than x and

y, we made use of a single distance metric that scalarizes the two distances in position and

angle as follows:

D[(x0, y0, θ0), (x, y, θ)] = ∥(x0 − x, y0 − y)∥2 + w|θ0 − θ|

where w is a tuned conversion factor.

To determine an effective radius r and a suitable conversion factor w for the rN classifier,

we used 10-fold cross-validation on each of the seven rN classifiers. For each solenoid and its

underlying classifier, we took test data from the train-test split and swept a threshold a from

1.0 to 0.0. E.g., when a = 0.7, for any query in the test split, 70% of its neighbors (from

train split) within r have to meet the success criteria of face different, g(s′, x′, y′, θ′) = True

iff s′ ̸= s, for that query to be predicted as successful. Predictions of all queries were then
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compared with the ground truth label, and an entry of true / false positive rate (TPR /

FPR) was plotted. The resulting ROC curves of one of the classifiers is shown in Figure 4.12.

While increasing the radius of the neighborhood improves performance by including more

data, radius beyond 5 mm yields little if any improvement. The value r = 5 with w = 5 was

commonly agreed by all seven classifiers from the corresponding AUROC curve value.

We then performed an rN multi-class classification using these parameter settings and

the 62,500 training samples (about 9,000 samples per classifier). Given an arbitrary state

of the die (s, x, y, θ), the controller will apply all 7 classifiers on this state and then fire

the solenoid whose corresponding classifier provides the best probability to roll the die to a

different face. 2500 samples were collected in this test experiment. The result of this task is

shown in Figure 4.13 with an average single-shot success probability of 0.753, versus 0.260

for the random policy — an improvement of almost three times.

Figure 4.13: Die face changing (success) counts and rates on each solenoid
using the rN classifier

4.4.2 Main Task: Flipping the Die to a Specific Target Face

The next more complicated control problem was to learn how to roll the die to a chosen

face different from the one it was currently on, so direction of rolling became significant.

The task here was to achieve a series of 2,000 randomly chosen target values for the

upper die face (with no sequential repeated faces) allowing up to 10 impulses to achieve

the desired die pose. This emulates the challenge of feeding properly oriented parts to a

manufacturing robot.
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Figure 4.14: Number of failures (red) and successes (blue) in achieving a
targeted goal face for each solenoid

Figure 4.15: Random Policy: Die positions and the solenoid fired.

The first policy tested was the purely random-choice policy, which served as the exper-

iment’s control group. This resulted in an overall 5.1% success rate for rotating the die to a

chosen face. The per-thumper activations and success rates are shown in Figure 4.14. As be-

fore, the die’s initial position density variation strongly favors the corral wall and avoids the

center. Since this is the random policy, we expected to see a uniform distribution of initial
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positions versus thumper as shown in Figure 4.15. As we applied seven different color code

associated to each solenoid, one can then expect that for an effective policy, there should not

only be some degree of improvement in the number of successful flipping, but the activation

region of each solenoid should be somewhat region-specific by color.

We are now in a position to consider a data-driven approach to approximating

h(s, x, y, θ,u) — the function that predicts the probability p of bringing the part into a

desired configuration given the state (s, x, y, θ) and an impulse u; We have the entire 62,500

ground-truth data points for use as the base data for the rN policy.

Figure 4.16: Thumper0 rN classifier accessing the neighborhood of a sample at
[23, -49, 196]; inset shows the location and flipping results of each

neighbor

For each of the seven solenoids, we formed a list of all (s, x, y, θ) examples within the

r = 5 radius (Figure 4.16). Based on these training examples, we calculated the success

probability for each of the seven solenoids and select the one with the highest success proba-

bility. To determine impulse duration, we took the mean of the successful impulses for that

solenoid. In the case of a tie between two solenoids, we chose one at random from the tied

candidates. An example of the decision neighborhood for a die at [23, -49, 196] is shown in

Figure 4.17.

Next, to access the flipping facet of those successful samples (red) in the inset plot,

we used the die transition table in Figure 4.7 (a). As shown in Figure 4.17, the six down
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Figure 4.17: Sample decision list map of the die from Figure 4.16 at [23, -49,
196]; the neighbors within the radius r and their rolling directions

are shown.

pointing arrows are transitions to face 3 while the three left pointing arrows are to face 6. If

the goal state is face 3, we would chose Thumper0 with the mean firing duration - 17 ms as

indicated by the arrow color. We fired Thumper0 at 17 ms, and the result was as predicted:

the die landed on face 3. Now if the goal state is face 1 (pointing right) or face 4 (pointing

up), we would examine the decision list of other 6 solenoids to find the best solenoid number

and impulse duration pair.

As we are only choosing the best firing command without looking more than one step

ahead, this is characterize as a greedy 1-step horizon approach to solve the under-actuated

control problem.

Using this policy, we ran a 2,000-random-goals experiment. Figure 4.18 shows a scatter

plot of the XY positions of the die, with the color of each dot indicating the particular

solenoids chosen by the rN policy to have the best chance to rotate the die to another face.

This plot forms a clear comparison with Figure 4.15 where the fixture of the firing positions

of each solenoid are evenly mixed.

The final results for this policy are shown in Figure 4.19, with the rN policy achiev-
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Figure 4.18: Die positions and the solenoid fired by the learned rN policy
seeking a particular target face. The Voronoi-like segments are

impure because the target face varies.

Figure 4.19: Number of impulses fired and successes. sorted by solenoid; the
overall average success rate on the first impulse is 30.6%. Note

the low density on the center solenoid (#2) is correctly
accommodated by the rN policy.

ing the chosen goal state 30.6% of the time on the first impulse, beating the benchmark

random policy by a factor of ∼6 times for single impulses. This indicates a very successful
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manipulation of the die with an assumption-free memory-based approach.



5. LEARNING TO STAND A WOODEN SQUARE NUT

While the impact-based Thumper as a nonprehensile manipulator has limited actuation on

parts, the die experiment has shown how complex manipulations can still be obtained using a

learning-based method. When considering manipulation tasks in manufacturing settings, it is

possible to have a mixture of high / low precision parts to be assembled together. Therefore,

it is important to assess the robustness of Thumper when dealing with less uniform parts

such as a square nut from a children’s assembly set shown earlier in Figure 3.5.

Comparing with the precisely 3D-printed die, the nut is imprecise in almost every

dimension. Measuring with a high quality digital caliper, the nut has dimensions of ∼35mm

× ∼34mm × ∼10mm. The flat profile is actually a trapezoid as the side lengths vary by

0.5− 1 mm. As the nut is made of wood, density is not well controlled, nor is the location of

the center of mass a constant; mass distribution and size of the nut will vary with humidity.

Some of the edges are distinctly rounded rather than sharp. These conditions of the nut has

led to several issues:

1. As the nut is rather thin (about 10mm thick), the desired goal state of the nut standing

on edge is metastable and is statistically rare (thermodynamically unfavorable), even

if there was adequate kinetic energy supplied in the solenoid impulse. This leads to

heavily imbalanced training classes, with a lot more failures than successes.
2. Since the nut is slightly asymmetric, the force needed to stand the nut is different on

each edge; however, it is hard for the vision system to identify such asymmetry on

every location of the impulse bowl. This ambiguity leads to some degree of inaccuracy

in the training process.
3. We also found that the apparatus must be well levelled and not tilted, as a tilt as small

as 0.4◦ will cause the nut to "migrate" to the lowest corner of the apparatus.

Of these issues, the asymmetry issue was underestimated in the initial exploration; the

consequences of this will be described in more depth below.

Portions of this chapter have been submitted to: C. Kong, W. Yerazunis, and D. Nikovski, "Stochastic
Control of Object Pose With Under-Actuated Impulse Generator Arrays," 2023 IEEE Int. Conf. Mach.
Learn. Appli. (ICMLA), Jacksonville, Florida, USA

42
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5.1 Training Data Collection and Exploratory Verification

Having built the necessary infrastructure for operation, we began training data collec-

tion using a random firing policy where for each sample, we logged a start state (x, y, θ, s)

where s has only two option "standing" and "laying", and fired a randomly chosen solenoid

with randomly picked impulse duration (uniform distribution, ranging from 8ms to 25ms),

yielding a new pose (x′, y′, θ′, s′) for the nut. Starting with a 30,000 sample data set, we

first verified the computer vision (CV) state acquisition result. The OpenCV pipeline can

correctly identify 99.6% of the experiment cases, and the unknown 0.4% are mostly cases

where the nut leans on the bowl’s wall. The 99.6% identified cases has zero false-negative

rate (falsely identified as laying down), and about 1% false-positive rate (falsely identified

as standing up). The overall result distribution resembles the die experiment in Figure 4.3

where data clusters toward the Thumper bowl’s wall. However, there was a severe class

imbalance, as shown in Figure 5.1.

Figure 5.1: Nut standing (success) counts and rates
versus firing duration

In the 30,000 sample database, there was about 2900 "successes" (s′ = 1). These

successes were distributed fairly evenly over the six peripheral solenoids, but the center

solenoid had only seven successes out of ∼ 2900 impulses delivered- a small enough set

that was dismiss as measurement error. The vast majority of the successful impulses in the

exploratory set were uniformly distributed around the six peripheral solenoids.

Further analysis of the training data using Figure 5.1 showed a soft threshold behavior

— for firing durations less than 14ms, the success in standing the nut up was essentially
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zero. At pulse durations of 18ms or longer,the typical success rate over the range of firing

durations was nearly constant.

Although the CV system could determine the (X, Y ) centroid of the square nut to

about one millimeter repeatability and the gross inclination of one facet of the cube between

0 and 90◦ to within one degree, the CV system was unable to resolve the position of the nut

with respect to the eightfold corner symmetry of a flattened cuboid (that is, which of the

eight corners of the flattened cuboid was in a particular corner of the image.)

To determine if this slight asymmetry in the flat nut would be significant, we used a

three-point kinematic jig to place the nut at a fixed position (x, y, θ) laying down as shown in

Figure 5.2 (a small dot of marker was added on one corner to allow a human to disambiguate

the visual eightfold symmetry of the square nut).

Figure 5.2: Nut positioned with kinematic jig for symmetry importance testing

With the jig, we conducted the repeatability test with firing durations varying from

15 ms to 25 ms in increments of 1 ms. For every firing duration, we repeated the position-

ing/firing cycle five times and recorded whether the nut remained laying or stood up. Using

Thumper0, we would found a pose and a firing duration that provides a local maximum

in the success rate, but when we rotated the nut 180 degrees on the Z axis and placed it

back to its original (x, y, θ) location (representing the CV system’s θ ambiguity), the best

mode changed to a different firing duration, even without changing which solenoid was to

fire. Similar changes were seen in the success rates and preferred impulse durations for all

eight possible nut orientations, showing that there was a fourth significant state variable
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representing the eightfold cuboid symmetry of the nut. This indicate that the variable s of

the actual state of the nut (x, t, θ, s) is not fully observable.

This lack of observability of such state variable implies several obstacles to be overcome:

• Difficulty in establishing an effective regression algorithm to pick the best impulse

duration for the nut.

• Difficulty in determining the most effective solenoid to fire

• Even assuming a perfect choice (100% success rate) of solenoid number and duration

exists, there were only a 1 in 8 probability of selecting that perfect choice, so any rate

better than 1 in 8 implies multiple nonzero-valued solutions for solenoid number and

firing duration.

5.2 Determination of a Control Approach

While there are great uncertainties in controlling the wooden nut, the goal of the

learning algorithm is just solving a binary classification problem: Given the initial state of

a laying nut (x, y, θ, s) where s = 0 (laying), find the command input ut, ud such that the

resulting state of the nut (x′, y′, θ′, s′) has s′ = 1 (standing) instead of s′ = 0. Using the

same idea of learning a probabilistic model, we could consider two approaches:

1. Train seven separate binary classifiers — one per solenoid — that outputs a probability

of the nut changing its status from laying to standing, given its current state (x, y, θ)

(Die experiment)

2. Train one binary classifier that utilizes the 6-fold symmetry of the thumper bowl,

combining all six peripheral solenoids together with suitable rotations to place the

effective thumper at (-60,0). Output was also the optimal thumper to fire given the

nut current state.

Approach 1 inherits similar learning model structure as the die experiment, but it has to

deal with imbalanced training class data. For each of the seven solenoids, the exploratory set

has ∼2900 solenoid firings, but only about 220 of the firings put the nut into the "successful"

(standing) position. For a desirable a 1:1 ratio per classifier, we would need to have about 440

total samples per solenoid. Therefore, we down-sampled the unsuccessful firings randomly

to obtain a 1:1 training set.
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This opens the question of how well ∼ 440 samples can cover the entire bowl. Given

the diameter of the bowl at ∼ 175.88 mm, we can approximate the area of the impact surface

as a circle:
Abowlbottom = D2π/4

= 175.882π/4

= 24295.33mm2 ≈ 243cm2

(5.1)

A set of 440 samples can sample the 243 cm2 bowl floor in X, Y at slightly better than a one

sample per square centimeter density, which given the prior experience with the dice seems

marginally acceptable.

Unfortunately, There is a third state variable - the rotation angle θ. As the angle

ranges from [0, 90] for a square shape, and binning the continuous variable θ into 10 bins,

with a perfect distribution of starting locations, we would need 243× 90
10

= 2187 or almost 5

times the current sample size to obtain a combined resolution of 1 cm and 10◦, which edges

into the domain of intractability.

Moving on to approach 2, While the state ambiguity and the class imbalance seem

to render the control task exponentially harder than the previous die task, we found that

the successful (s′ = 1) location distribution of each peripheral solenoid exhibited very sim-

ilar patterns — much similar than the die experiment — in the training data set. This

observation was especially prominent when we looked at the location distribution from just

one particular impulse duration. To confirm this observation, we conducted 20,000-sample

random-firing exploratory run using just the firing duration of 20 ms — a strength that is

not too strong but well into the successful plateau range in Figure 5.1. The result showed

that:

1. The success rate of random policy was not seriously compromised with a reduced

input space (ut × ud : 7× 17 → 7× 1, or → 6× 1 if the center solenoid was considered

ineffective)

2. The system did exhibit a sixfold symmetry with respect to the relative locations be-

tween the solenoid and the nut for a successful standing state (Appendix B.1)

This implies that the resulted manipulation induced by one peripheral solenoid can be gen-

eralized to other solenoids with the correct transformation. This 6-fold symmetry technique

solves the lack of "standing" sample problem with the cost of limited input space. While
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an additional downside of this approach was that the center solenoid Thumper2 would be

completely left out due to lack of its standing class sample, the resulting shared training

data pool has ∼2650 usable ground-truth samples, comfortably better than the desired 2187

samples mentioned from the previous calculations.

Figure 5.3: Transformed and Lumped Random Policy Initial Locations for
Standing a Nut

For this to work, the entire physical system must first be symmetrical. As mentioned in

Chapter 2, the solenoid mounting plate of the thumper system was made from polycarbonate

plate and manufactured using a three-axis flatbed CNC mill with an accuracy of ∼50 microns.

Using a 3D-printed checkerboard calibration plate, we found the geometric center of the bowl

with sub-millimeter accuracy (Figure 3.3). We then set that point to be the origin of the

world frame, and the frame of Thumper0 (shown in image) as the primary orientation on

the negative X axis. Therefore, for any motion of the nut, we transformed its initial state
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(x, y, θ, s) and final state (x′, y′, θ′, s′) from world frame to their own perspective frame10:

pi = Riopo

=

 cos qi sin qi

− sin qi cos qi

x
y


θi = θo − qi

(5.2)

Where po, θo are initial / final states obtained by the camera in world frame and i is the

frame id of six peripheral solenoid:

i ∈ {0, 1, 3, 4, 5, 6}

qi ∈ {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}
(5.3)

As shown in Figure 5.3, instead of treating each sample as a manipulation from one

solenoid, we propagated the motion to the other five. After down-sampling the "failures"

(nut lying) to ensure a 1:1 ratio, we still have a six-times denser sample distribution which

resulted a more defined decision boundary.

5.3 Algorithm Training and Control Result

Since the task is simply a binary classification, more algorithms can be considered

comparing with the die experiment. Using the sci-kit learn python package, we trained the

data in three classifiers — kNN, random forest (RF), and a radial-basis function SVM (RBF

SVM) [19], [20]. We employed the same 10-fold cross-validation technique as the die task.

The samples were randomly split into 10 bins; each bin maintains the outcome class ratio of

1:1. Given a classifier of interest, we used 9 bins to train, 1 bin to test; the AUROC curve of

this train-test split was stored, and we repeated this process 10 times in total. In the end,

the performance of this classifier, with a fixed set of hyper-parameters, would be expressed

as the mean value of 10 AUROC curve values. In the end, the performance of this classifier,

with a fixed set of hyper-parameters, would be expressed as the mean value of 10 AUROC

curve values in Table 5.1.

10This is the inverse of the typical rotational transform matrix because the part coordinate is moving from
world frame to a synthetic frame of reference
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Table 5.1: Nut Experiment Trained Classifier Parameters

Classifier Hyperparameters AUROC µ AUROC σ

kNN k=24 0.715 0.020
RF ntree=200

maxdepth=20
minleaf=10

0.745 0.017

RBF SVM γ=1 C=10 0.728 0.022

Using the listed hyperparameter values, we ran an additional 20,000-sample testing

experiment for each of the trained classifier. During the experiment:

1. The state of the nut (x, y, θ, s) was captured via the CV system.

2. It was transformed using Eq.5.2 to six orientations corresponding to six peripheral

solenoids’ frame of reference as in Eq.5.3.

3. The trained system was then called on each of the six transformed states.

4. The six resulting probabilities were obtained and compared.

5. Choose the result yielding the highest probability of success

6. Fire the solenoid with the highest probability of success

7. Capture the new state of the nut (x′, y′, θ′, s′) via the CV system.

Table 5.2: Nut Experiment Control Results per Classifier

Policy standing (count) standing (prob) improvement
Random (control) 1817 9.08% control
kNN 2793 13.9% 1.53 x
Random Forest 2673 13.4% 1.47 x
RBF SVM 2665 13.3% 1.46 x

The results of all three tested classifier were as follows in Table 5.2. Figure 5.4, 5.5,

and 5.6 show the decision boundary plots of the corresponding classifier in the background

where red regions are predicted to be successful initial locations for the nut to stand under a

20ms impulse at (−60, 0). The scatter plot on top are the actual nut’s firing locations taken

using the results of the classifier.

At the first peek of all three plots, it is alarming to see how the decision boundaries

of kNN is oddly shaped with the experimental result almost completely detached from the

boundary. Meanwhile, the plot looks much more natural for the RF and SVM classifier. A

possible explanation is how each algorithm fit the training data. kNN as a memory based
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Figure 5.4: Flat nut kNN decision boundaries sliced at 5, 15, ..., 85 degrees in
the background as θ of the experiment data varying in value from 0
to 10 degrees, 10 to 20 degrees, etc. up to 80 to 90 degrees; in each

plot red dots are succeeded and black dots are failed cases.

method and can easily develop very step and discontinuous decision boundary if neighboring

distance of a particular dimension become nonuniform. The conspicuous visual mismatch

in Figure 5.4 is actually a result from fast changing decision boundary within even 10 de-

grees variation. With random forest (Figure 5.5), one can increase the number of tree to

reduce over-fitting, and reduce the depth of the trees to increase smoothness. Therefore the

cross-validation trained RF model has a shape that is close to the general distribution of

the successful data distribution. Different from the other two methods, SVM takes assump-

tions of training data distributions. With the RBF Gaussian kernel, decision boundary are

smoothened due to how distance are calculated. The relaxation parameter further flattened

the decision boundary and resulted the current shape in Figure 5.6.

Comparing the stats listed in the training (Table 5.1) and result (Table 5.2), we found
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Figure 5.5: Flat nut RF decision boundaries sliced at 5, 15, ..., 85 degrees in
the background as θ of the experiment data varying in value from 0
to 10 degrees, 10 to 20 degrees, etc. up to 80 to 90 degrees; in each

plot red dots are succeeded and black dots are failed cases.

that the performance of the three binary classifiers are quite similar, albeit kNN achieved

the highest performing result with the lowest AUROC during the cross-validation. In the

last column of Table 5.2, we see that the improvements compared with the random policy

was around 1.5 times at max. This was at odds with the live performance; specifically, using

the kNN policy as an example, there seem to be regions in the thumper bowl (towards the

center) where nut would stand instantly with less than three tries. Once the nut’s position

migrated towards the wall due to the bowl’s structural tendency, it would take more than

10 tries to get to a successful hit, which is closer to how a random policy would perform.

To further explore this previously undiscovered characteristic of Thumper, we payed a closer

look to the temporal results of the testing experiments. Figure 5.7 shows the distribution of

the nut location after the first failed attempt and after the sixth.
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Figure 5.6: Flat nut SVM decision boundaries sliced at 5, 15, ..., 85 degrees in
the background as θ of the experiment data varying in value from 0
to 10 degrees, 10 to 20 degrees, etc. up to 80 to 90 degrees; in each

plot red dots are succeeded and black dots are failed cases.

We noticed an interesting phenomena here. First in Figure 5.7 (a), the position distri-

bution after a first kNN-selected pulse that did not stand the nut up appears to be visually

uniform, but after multiple impulses in, the still unsuccessful cases seem to form a distinct

"attractor" region at the outer rim of the hexagonal corral wall. Such phenomena is in co-

herence with the live observation mentioned in the previous paragraph: the closer the nut is

to the wall, the harder it is to stand (more N tries needed).

Along with this idea, we plotted the testing experiment success rate against the number

of tries to stand the nut in Figure 5.8. The random policy exhibits a relatively consistent

success rate around 0.09. The kNN (and other two policies) success rate exhibits a declining

pattern, with the first impulse having a 0.211 success probability, the second impulse having

an 0.192 probability, and so on. One possible explanation for this phenomenon is the evolving
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Figure 5.7: kNN testing experiment (x, y) positions of the flat nut after the first
failed attempt (a), and the sixth failed attempt (b)

Figure 5.8: Success rates of each policies vs. the number of tries to stand the
nut

distribution of the position of the nut after repeated failed attempts which was just discussed

and shown in Figure 5.7. By averaging over all values of the success rate in each policy data,

one can then obtain the same standing probabilities in Table 5.2.
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The success rates plot in Figure 5.8 show the effectiveness of the control policy. Specif-

ically, if the nut is placed around the center of the thumper bowl, the kNN policy can stand

the nut with almost twice the chance of the random option.



6. WORKING WITH A ROBOT MANIPULATOR

In the past four chapters, we have included details about the design and control of Thumper

in both hardware and software perspectives. Although Section 4.4.2 and 5.3 have shown

promising result of Thumper manipulating parts into their desired goal states, the connec-

tion between Thumper and aforementioned robot assembly tasks in Chapter 1 (Figure 1.2)

is not readily obvious. Therefore, we believe that by demonstrating the collaboration be-

tween Thumper and a 6-DoF industrial robot manipulator, a complete image of Thumper’s

industrial application would show.

6.1 Experiment Equipment and Design

With the addition of an ABB IRB 1200 robot manipulator (900 mm reach, 5 kg max

load), we designed a proof of concept experiment with the setup shown in Figure 6.1. The

manipulator was installed to the right hand side of Thumper in the camera’s perspective.

The object-of-interest for manipulation was chosen to be the 6-faced die. Due to the overall

flat surface of the die, we mounted a 20 mm diameter suction cup onto the robot end-

effector. The suction cup is attached to a spring loaded metal air tube; the spring ensures

a soft contact between the robot tool tip and the die on the thumper impact plate. The

content of the experiment is the following:

For each die part loaded into the Thumper bowl, manipulate the die such that

the upward facing number ended up facing downward; once the manipulation is

complete, the robot would take the die out.

This experiment can be interpreted as a stamping task where the desired face to be

stamped need to first be recognized by the camera mounted on the top and then manipulated

to be facing down for a downward stamping motion. Such a task would be hard to accomplish

with most state-of-the-art contact-rich manipulation techniques such as pick-and-place [8],

pivoting [21], or rotating the object using tools [22], since training such a task from zero

requires learning method that takes in large amount of states including the die’s states,

the force and torque detected on the tool center point (TCP), and the states of the robot

end-effector which results in a long training time [23]. A common execution time for pick-

55
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Figure 6.1: Thumper joined with an ABB IRB 1200 Robot Manipulator
holding a die with a suction cup

and-place 180° manipulation using a robot arm would take around 15 seconds, pivoting with

two fingers shortened the time greatly to around 5 seconds. Pivoting with a tool, however,

would take more than 30 seconds.

An alternative approach would be to employ a more dexterous grasping tool such as

Dactyl from OpenAI [24], or to utilize dual-arm manipulation such as the HERB robot

[25]. These approaches would be more robust and faster but would cost greatly to develop

and manufacture. Thumper facing manipulation task like this, however, would provide an

economic solution with relatively fast (20 hours unsupervised) training time and execution

time (less than 5 sec on average for the 180° rotation).
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6.2 Method and Procedure

Taking a closer look of this experiment, the first half of which involved only Thumper

can easily be achieved with some simple modifications on the 2000-random-goals testing

experiment code in Section 4.4.2. The die’s design followed the international casino standard

where the opposing faces add up to seven. Therefore given the current die facet sini = n, the

target facet would always be starg = 7 − n. Therefore, instead of randomly generating the

next target facet, Thumper would send the current location of the part to the ABB robot,

wait for the part to be retrieved, and start again once a new part arrives.

With the inclusion of an ABB robot, we made the decision of using a suction cup rather

than a gripper due to the light weight and flat surface nature of the die. An extension on the

suction cup mechanism ensured that the robot can reach positions closer to the white corral

wall of the thumper bowl. When determining the placement of the robot, we realized that

the previous spacing between the ring light / camera and the corral wall of thumper was too

small for the robot end-effector and the long downward extending suction cup. While the

tall metal stand shown in Figure 6.1 enabled a flexible adjustment of the ring light /camera

height, the 640p webcam would have trouble recognizing the die’s face number if the camera

is too high up. As a result, we manually jogged the robot into its furthermost position and

adjusted the height of the ring light / camera sets to their lowest possible positions.

Such a close operation distance between the robot arm and the ring light as shown

in Figure 6.1 are discouraged under most circumstances and would require testing of robot

control programs in a simulation to ensure safety. We used a simulation software built by

ABB called Robot Studio. The library of Robot Studio contained the exact model of the

ABB IRB 1200 robot used in this experiment. While reconstructing the entire experimental

setup in the simulator with precise distance between Thumper and the robot measured was

an option, we adopted an alternative approach where the robot’s motion were planned based

on a calibrated position of Thumper in the robot base frame.

6.2.1 Robot-Thumper Frame Calibration

To establish a relationship between Thumper’s frame and the robot base frame, we

adopted the following notation format. Let (EP ,OP ) denotes Thumper’s impact plate where

EP represents the orthonormal frame calibrated in Section 3.1 shown in Figure 3.3, and OP

represent the origin of Thumper’s frame at the very center of the impact plate. Let (EB,OB)
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denotes the robot base where the origin OB is located at the bottom of the robot base with

the z-axis of EB pointing straight up. The direction of the x-axis of EB is considered to be the

front of the robot, and in Figure 6.1, it is pointing towards the direction of where Thumper

is installed.

To find pBP , the position of OP in EB, and RBP the transformation from EP to EB,

three points from Thumper were needed: 1) the point of origin OP , 2) a point on the x-axis

of EP , and 3) a point on the y-axis of EP . Note that the goal is to represent (EP ,OP ) in

the (EB,OB) frame. We needed vectors that represent 1), 2), and 3) in robot base frame’s

coordinates. Instead of taking measurements by hand, the most straight forward method is

to utilize the forward kinematics of the ABB robot.

The 6-DoF robot arm has the following iterative formulation of frame rotation:

E1 = R(⃗h1, q1)E0

E2 = R(⃗h2, q2)E1 = R(⃗h2, q2)R(⃗h1, q1)E0
...

E6 = Π6
n=1R(⃗hn, qn)E0

(6.1)

In Equation 6.1, E0 = EB is the robot base frame. E1, . . . , E6 represents orthonormal frames

of each link of the 6-linked ABB robot. Due to the linked connections between each robot

joint link, each joint frame En can be represented in the base frame E0 in terms of propa-

gating rotational operation. R(⃗hn, qn) is the rotational operation from En to En−1. h⃗n is the

rotational axis of the nth robot joint, and qn is the joint angle in radian. The corresponding

rotation matrix projected in E0 can be expressed using the Rodriguez Rotation Formula,

R(hn, qn) = eh
×
n qn ∈ SO(3) where h×

n is a 3-by-3 skew-symmetric matrix that functions as a

cross product in a matrix multiplication fashion. To simplify the notation of frame rotation

matrices, we defined the following representations:

R01 := R(h1, q1) = eh
×
1 q1

R02 := R(h1, q1)R(h2, q2) = eh
×
1 q1eh

×
2 q2

...

R06 = Π6
n=1R(hn, qn) = Π6

n=1e
h×
n qn

(6.2)
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Since the suction cup frame (tool frame) ET inherent the orientation of the sixth frame E6,
R0T = R06.

Following this representation, with joint angles between each link known, the location

of the suction cup tip OT in the robot base frame EB can be solved at any moment as:

p0T = p01 +R01p12 + . . .+R06p6T (6.3)

Where pi,i+1 are known lengths of each link represented in their own frame Ei.

Figure 6.2: Defining Thumper frame EP in the robot base frame EB using three
points OP , xP , yP

Now to sample the three point-of-interest to define the relative position and orientations

between the Thumper frame EP and the robot base frame EB, we simply put Thumper in

calibration mode (Figure 2.5) and manually jog the suction cup of the robot p0T to the origin

OP , and two arbitrary points on Thumper’s x, y axis shown in Figure 6.2, and we name

them xP and yP respectively. Using Equation 6.3, three corresponding vectors in EB are

obtained as:
pBP = pOP

− pOB

pBx = pxP
− pOB

pBy = pyP − pOB

(6.4)

Next, to define the orthonormal frame of Thumper EP , we calculated the unit vectors
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in EB:
ex =

pBx − pBP

||pBx − pBP ||

ey =
pBy − pBP

||pBy − pBP ||

ez = e×x ey

(6.5)

Three unit vectors in Equation 6.5 form an orthonormal basis of RBP ∈ SO(3):

RBP =

 ex ey ez

 (6.6)

With the matrix in Equation 6.6, any location of the die obtained from the Thumper frame

can be represented in the robot base frame EB as:

pDie = pBP +RBP


x

y

25

 (6.7)

where x and y are the die’s location obtained from the camera, and 25 is the height of the

die above the impact plate in millimeters.

Thus the completed calibration enabled the robot to fetch the die based on the locations

provided by the camera of the Thumper Assembly.

6.2.2 Communication and Control

At this point, the ABB robot is aware of the location of Thumper in its own frame;

however, to achieve collaboration, the robot need to know:

• whether Thumper has finished the manipulation task

• if done, where is the exact location of the die in Thumper frame after the manipulation

Thumper, on the other hand, need to know:

• if the robot is current busy (can robot run a new job)

• if the location of the robot arm is still in the camera’s vision field (can robot buffer a

job to be complete while the current job is finishing)
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To establish communication between these two independent hardware, we used an open

source interfacing software called Robot Raconteur (RR) [26]. RR holds driver program for

numerous industrial robot manipulators including the ABB IRB 1200 driver module that

can be executed with Python3 on my Linux computer that controls the camera and Arduino

of Thumper (Figure 1.2). With the RR driver running in the background, the live states

of the robot were broadcasted onto the lab’s wireless network. Within the python control

module of Thumper, we added an RR wire subscription so that direct commands obtaining

and controlling the robot can be sent with reference to the vision information.

The RR driver for ABB robots supports various command mode from jogging to a

preset joint configuration to accurate waypoints interpolations in joint space [27]. By in-

cluding the robot definition tools from RPI’s General Robotics Toolbox [28], we could jog

the robot’s suction cup p0T in the Cartesian coordinate space of the robot base frame EB.

Specifically, we first calculated the errors between the current suction cup spacial position

P (qk) := (p0T (qk), R0T (qk)) with joint angles qk and the desired spacial position Pd, obtained

the desired spacial velocity Vd := (vd, ωd) of the suction cup to reduce the error. Then, to

solve for the robot motion needed to achieve Vd, we used quadratic programming to solve

the following optimization problem:

q̇k+1 = argmin
q̇

∥J(qk)q̇k − Vd∥2 (6.8)

In Equation 6.8, J(qk) ∈ R6×6 is the Jacobian matrix at the current joint angle qk ∈ R6 that

maps the joint angular velocity to the spacial velocity of the suction cup as:

Vk = J(qk)q̇k (6.9)

The resulted joint angular velocity q̇k+1 was then passed directly to the RR driver as velocity

control command. The command control loop was set to run at 100 Hz which ensured an

accurate velocity profile reducing the error to reach the desired suction cup spacial position.

While most motion plannings of such robot involves joint limit constraint setup, sin-

gularity analysis, and / or obstacle avoidance, the motion space of this pick-and-place task

was relatively stationary with preset waypoints such as the home position, the picking up

position, and the dropping off position. To deal with potential errors from the camera pro-

vided coordinates, a circular boundary was set along the perimeter of the corral wall during
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the die picking command. Lastly, the control program was always tested in the ABB Robot

Studio simulator before deployed to the actual hardware.

6.3 Execution and Result

The Experiment Control Program (ECP) started by loading camera calibration, die

face recognition, and trained radius neighbor classifier parameters. With the Robot Racon-

teur (RR) driver running in the background, the ECP initialized a robot pick-and-place

control program in parallel using python’s Threading mechanism. After the robot is homed,

the experiment began.

A Die was thrown into the Thumper bowl, and when its face number was determined

by the over-hanging camera, an action according to the 1-horizon greedy policy was made

to flip the bottom face of the die up. Once the target face was achieved, the coordinate of

the die was sent to the robot control thread, and the robot start reaching for the die. The

robot arm picked up the die, and as soon as the arm moved completely out of the camera’s

vision field, Thumper was then actively anticipating new incoming die.

Now, if the robot finished the dropping off and returned to its waiting position before

the Thumper finishes its manipulation, then ECP would follow the same logic flow from the

previous paragraph. In most cases, however, Thumper actually finished the manipulation

of the second die before the robot arm was done with the previous task. In this situation,

ECP would pulse Thumper, load the current die location into a buffer stream, and push the

command right after the previous task finished. Note that currently Thumper support only

one part at a time as the collision between parts was yet accounted by the the learned policy.

An action clip series of the experiment is shown in Figure 6.3.

Table 6.1: Ten Experiment Result with Execution Time

exp # 01 02 03 04 05 06 07 08 09 10 Avg.

sini 5 4 2 1 6 2 3 3 6 2 —
starg 2 3 5 6 1 5 4 4 1 5 —
ntries 4 4 1 5 3 9 6 3 2 9 4.6
ttakt (sec) 3.21 4.51 1.03 4.5 3.14 8.1 6.3 2.3 1.89 8.86 4.38

In Figure 6.3 (a), the experiment started with a die face number 5, and the goal was

to get to 2; (b) shows the flipping right before reaching the target face. (c) and (d) shows
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Figure 6.3: Exp "Flipping the bottom face up" action clips; (a,b) flipping from
5 → 2; (c,d) robot picking up the die; (e,f) flipping a new die from

4 → 3

that the robot has received the coordinate of the die and picked up the die with its suction

cup. (e) shows that as the arm was carrying the die out of the camera vision field, a new die

was loaded into the Thumper bowl. (f) shows the frame right before the die was flipped to

the target face 3 from a 4, and meanwhile, the robot had dropped off the first die.

We continued this experiment till ten manipulations have been done. Results including

the first two trials in Figure 6.3 are shown in Table 6.1. From the calculated average values

of the ten trials at the last column of the table, we saw that the average execution time

needed for flipping the die’s bottom face up using Thumper was less than 5 second. This is

a competent performance result comparing with other manipulation method for this kind of

task demonstrated in [8].



7. CONCLUSIONS AND FUTURE WORKS

This thesis presented a working prototype of the nonprehensile impulse-based object manip-

ulator. From the physical design of the assembly to the software tools used to control each

component, the unique functionality of Thumper was discovered by directly interacting with

objects under gravity. On top of the chaotic nature of impulse-based manipulation, the lack

of simulation rendered the learning process slow and challenging. Such difficulty motivated

the development of a fast and robust vision system whose functionality can be apply to a

large variety of recognition problems beyond this thesis.

The two manipulation experiments on the six-faced die and wooden nut showed the

effectiveness of Thumper for object orientation when driven by ML controllers, even with

no prior knowledge of the actual contact physics. In addition to the already presented

control result, the tuned Nearest Neighbor classifiers have demonstrated their robustness

against changes in operation environment as similar statistics were obtained when the device

was reassembled in a different lab space. The six-fold increase in the success rate of the

die manipulation, the two-fold improvement in the success rate of standing the wooden

nut, combined with the minimal need for manual supervision of the method (all training

is self-supervised), could possibly result in a very fast and cost-effective method for part

manipulation for robotic assembly.

Such idea was enhanced by the Robot-Thumper collaborative experiment in Chapter

6, where an example of the physical setup and communication strategy were demonstrated

under the context of a common manipulation task on the six-faced cubical die. The resulted

execution time was on pair with the best state-of-the-art pivoting approach.

7.1 Future Directions

As we conclude the project in terms of a master thesis, we see improvements and future

research directions in the topic of learning algorithm and multi-object manipulation.

Portions of this chapter are to appear as: C. Kong, W. Yerazunis, and D. Nikovski, "Learning Object
Manipulation With Under-Actuated Impulse Generator Arrays," 2023 Am. Control Conf. (ACC), San
Diego, CA, USA

64
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7.1.1 Extending to a RL-based Controller

When dealing with the initial data generated from random manipulation, instead of

resorting to the trending "Black-Box" approaches such Neural Networks, we chose one of

the simplest learning algorithms — Nearest Neighbors. This consideration was based on

not only the memory-based vs. model-based comparison, but the characteristics of the

data structure: low feature space dimension with relatively large sample size. We believe

that the well received final performance of the die control experiment was a direct result

of the learning algorithm; specifically, when we can’t make any assumptions of the data

distributions, the algorithm with the least number of hyper-parameters (Nearest Neighbors)

was the safer choice.

However, during the actual performance of the learned 1-horizon greedy policy, we

observed some inefficiencies during the manipulation: when the part was getting close to

the edge of the impact plate, as the controllability of Thumper in rotation gets relatively

low, lots of unsuccessful attempts were made. An alternative would be: first move the part

to the center of Thumper where rotations are much easier, then perform the actual flipping

action. Such alternative challenges the current 1-horizon greedy policy and expresses a great

motivation in moving to a multi-horizon policy where the optimal policy considers future

outcomes.

In fact, the initial data recording structure in Table 4.1 has hinted the connectivity

between the die control experiment set up (Section 4.4) and the four fundamental elements

for a Markov Decision Process based Reinforcement Learning [29]:

• S, a set of states for the agent — s := (s, x, y, θ)

• A, a set of actions that the agent can take — a := (ut, ud)

• Pa(s, s
′), the state transitional probability under the condition of a certain action a

• Ra(s, s
′), the immediate reward after such transition under the condition of action a

To calculate an effective Pa(s, s
′), the sample size calculation made in Section 4.3 has

also given an estimate that about 100 times more data ( 6,666,660 samples) would be needed

to provide enough coverage on a state / action space discretization of

s× (x× y)× θ × ut × ud := 1× (962)× 9× 7× 11 = 666, 666 bins (7.1)

Meaning that Thumper will be running for 3 months straight. Since this approach might
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surpass the physical strength of the device, alternative approach like SARSA or Q-learning

that directly learns the value function can be an interesting direction. Another possible

route is the kNN-TD approach in [30] which produces a probabilistic representation of the

input state signal to construct robust state descriptions. This method seems to be able

to incorporate the already tested Nearest Neighbor parameter and produce fast converging

results.

7.1.2 Multi-Object And / Or Multi-Solenoid Manipulation

Another future direction is to simultaneously manipulate multiple parts, with more

than one solenoid firing simultaneously. The challenge in this topic lies in multi-object

localization and motion prediction, especially when two or more part is in contact with each

other.

Given the wide range of motion of just one robot arm, a larger Thumper with alter-

native fixture / solenoid arrangements can also be explored, featuring multiple robot arms

picking up multiple correct oriented parts at the same time. This way, Thumper can work

with robot arms to perform singulation (separate lumped parts) and orientation at the same

time.
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APPENDIX A

DIE FLIPPING EXPERIMENT FIGURES

A.1 Die Random Policy Experiment Data of Each Solenoid

(a) (b)

Figure A.1: Flipping the Die using (a)Thumper0, (b)Thumper1
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(c) (d)

Figure A.1: Flipping the Die using (c)Thumper2, (d)Thumper3

(e) (f)

Figure A.1: Flipping the Die using (e)Thumper4, (f)Thumper5
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(g)

Figure A.1: Flipping the Die using (g)Thumper6
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A.2 Die Random Policy Experiment Facet Transition Graphs of

Each Solenoid

(a) (b)

Figure A.2: Flipping the Die using (a)Thumper0, (b)Thumper1
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(c) (d)

Figure A.2: Flipping the Die using (c)Thumper2, (d)Thumper3
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(e) (f)

Figure A.2: Flipping the Die using (e)Thumper4, (f)Thumper5
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(g)

Figure A.2: Flipping the Die using (g)Thumper6



77

A.3 Die Random Policy Experiment 2D Transition Graphs of Each

Solenoid

(a) (b)

Figure A.3: Flipping the Die using (a)Thumper0, (b)Thumper1
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(c) (d)

Figure A.3: Flipping the Die using (c)Thumper2, (d)Thumper3
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(e) (f)

Figure A.3: Flipping the Die using (e)Thumper4, (f)Thumper5
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(g)

Figure A.3: Flipping the Die using (g)Thumper6



APPENDIX B

NUT STANDING EXPERIMENT FIGURES

B.1 Nut Random Policy Experiment Data with Fixed Impulse Du-

rations

(a) (b)

Figure B.1: Standing the nut using (a)Thumper0, (b)Thumper1
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(c) (d)

Figure B.1: Standing the nut using (c)Thumper2, (d)Thumper3

(e) (f)

Figure B.1: Standing the nut using (e)Thumper4, (f)Thumper5
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(g)

Figure B.1: Standing the nut using (g)Thumper6
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